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A general set of equations is derived for calculating the supersaturation required to 
obtain a given rate of nucleation. This set is general enough to encompass all the 
present theories, the classical theory, the Lothe-Pound theory, the Reiss-Katz-Cohen 
theory, a recent theory by H. Reiss, and any other theory which includes a size- 
dependent correction to the classical theory. Comparison of these predictions is made 
for various substances. 
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The classical theory o f  the homogeneous  nucleation o f  a liquid f rom its supersaturated 
vapor  was developed f rom 1925-1942 by Volmer, Becker, and Doering,  m and 
Zeldovich (2) and can most  briefly be summarized as follows. Using detailed balancing, 
one obtains the following result for the rate o f  nucleation, thus reducing the rate 
problem to one o f  determining the "equilibrium" concentration, n l ,  o f  clusters 
containing i molecules: 

co 

where 

I~ = ~ P / ( 2 ~ m k T )  ~/~, si ~ (36~rv2) ~/a i 2/a 

where J is the number  o f  nuclei formed per unit time per unit volume, /7 is the rate 
at which ideal-gas molecules impinge on a unit surface, and s~ is the surface area 
o f  a cluster containing i molecules; and where P is pressure, T is temperature, rn is 
mass per molecule, k is Bol tzmann's  constant,  v is the volume per molecule in the 
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liquid phase, and a is the mass accommodation coefficient (a <~ 1). The classical 
theory assumes that the free energy of a cluster containing i molecules is equal to 
that of i molecules in the liquid phase plus a surface free energy. Using this assumption 
one can easily show (3~ that 

where 

n~ : N exp[i In S - -  7i~13] (2) 

= (36~rv~)Z/3 c~/kT (3) 

cr is the surface free energy, S -~ P/P~ is the supersaturation, P~ is the equilibrium 
vapor pressure, and N is the total number of clusters of all sizes per unit volume. 
It is important to realize that N, assuming the supersaturated gas to be at a suff• 
low pressure to be ideal, is to be obtained from the relation N = P/kT. (~ 

Various authors ~4-7~ have criticized and offered corrections to Eq. (2). These 
corrections are usually given in terms of a size-dependent multiplicative factor, f~. 
It is convenient to put the various corrections into the exponential of Eq. (2) which 
thus becomes 

ni = Nexp[gi q- i ln  S -- ~i 218] ~- Nexp[Ui] (4) 

where g~ =- lnf i  and, by definition, U~ ~ g~ q- i In S -- yi z/3. 
The rate of nucleation has traditionally been evaluated ~2) by converting the 

summation in Eq. (1) to an integration, expanding the logarithm of n~ in a Taylor 
series about its minimum value and extending the lower limit of integration to -- oo. 
In the immediately following paper, E. R. Cohen ~8) critically discusses these approxi- 
mations, providing both estimates and bounds to the errors due to them. For all 
substances, and for all nucleation rates for which the theory can be justified physically, 
he finds that the mathematical approximations introduce an error of less than 1 ~o �9 

Converting the summation to an integration, Eq. (1) is replaced by 

J :  f l / f ~  [s(x)n(x)]-ldx (1') 

where the continuous variable x now replaces the discrete variable i. Substituting 
Eq. (4) and the definitions of/3 and s into Eq. (1'), one obtains 

~ / r 
3 : ~ /J1 x-~/z exp[-- U(x)] dr. (5) 

~, the value of x at the minimum of n(x), and S, the critical supersaturation, are 
related by the equation 

In  S : 27/(3~ z/3) -- g'(~) (6) 

which immediately follows upon applying the definition of 2, i.e., n'(2) ----= 0, to 
Eq. (4). The integral can be readily approximated, with the result that 

J : (  [ 
\ 7 T i n /  
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where ~, has been defined in Eq. (3), and where Eq. (6) has been used. From Eq. (7) 
we see that a size-dependent correction factor not only affects the rate of nucleation 
for a given value of S explicitly (the g(s term) but also implicitly through Eq. (6) 
which defines the value of 2 and, to a minor extent, through its second derivative. 
Note that Eq. (6) is not the Kelvin equation! Only in the case of the classical theory, 
where g'(s = 0, does it reduce to the Kelvin equation. With the inclusion of a 
size-dependent correction, the cluster of critical size (i.e., a cluster in unstable 
equilibrium with its surrounding gas) does not contain the same number of molecules 
as a droplet in equilibrium with its surrounding gas. 

The introduction of an 2-dependent correction makes it necessary to treat 
instead of S as the central variable. Equation (7) can be readily solved using Newton- 
Raphson iteration, noting that almost all the dependence on 2 is in the exponent. 
Equation (7) depends on P and thus on the supersaturation S = P/P,; in performing 
the iteration both Eqs. (6) and (7) must be used. Expressing Eqs. (6) and (7) in 
directly measurable variables one obtains for the (n + 1)th estimate of s 

~.+1 = .~. - [u (x . )  + A(s  + B ] / U ' ( ~ . )  (8) 

where 

u ( x . )  = g ( s  - ~ . g ' ( x . )  - 7 ~ / ~ / 3  

A(~,~) = 2 In S ,  + �89 In[1 + 4.5"2~/3g"('Y,~)/y] 

B =  ln[ - f  ~ RT]  ~ ~r ] d J 

In s .  = 2r /~ . /~  - g ' (~ . ) ,  
( 36~NoM2 )I/3 c~ 

Y = ' d 2 ~ R--T 

and where No is Avogadro's number, d is the density of the liquid, M is the molecular 
weight, and R is the gas constant. 

The critical supersaturation, i.e., the supersaturation at a rate of nucleation 
of one nucleus cm -3 sec -1, can be obtained from the general solution given by Eqs. (8) 
once one specifies g(~) and its derivatives. The classical theory has no correction 
factor; thus, trivially, g and its derivatives are: 

gelassieal - -  O ,  g'  - -  O, g" = O. - -  c l a s s i c a l  - -  c l a s s i e a I  
(9) 

Lothe and Pound (41 have argued that the free energy of a cluster should be increased 
by a translational and rotational free energy and decreased by the loss of six vibra- 
tional degrees of freedom whose value they approximately estimated as - -kTln  10 a. 
Thus 

g(s = In l( .27rs ],/2 ') Vg" 77 "1/2 (" 87r2kT 2- ,3/2 32v. 10_~I (10) 3 / g  

where h is Planck's constant and vs = kT/P is the volume per molecule in the gas 
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phase. Combining the variables and constants and converting to the directly 
measurable variables used in Eq. (8), one obtains 

l (MRT)4 t In S 4 In g(2)L P = In 1.183 NoahGdP~ t + 2, 

g'(2)Le = 4/2, g"(2)Le = --4/22 (11) 

Note that instead of P, the identity P ~ P~S was used to emphasize that in the 
iterative solution of Eqs. (8) and (10) it is necessary to use the current value of S. 

Reiss and Katz, (5) and Reiss, Katz, and Cohen (n) argued that it is necessary 
to start from the partition function of the entire system and in a consistent fashion 
make all microscopic corrections (rotation, translation) before making the thermo- 
dynamic identification with the drop. Reiss and Katz assumed that the center of  
mass of a droplet with fixed boundaries fluctuates over the entire droplet. To be 
more realistic, Reiss, Katz, and Cohen (to be referred to as RKC) made a model 
calculation for the actual fluctuation of the center of mass. The RKC correction 
lies between the following limits: 

g(~)RKC1 = ~- ln(62/Tr) and g(X)RKC3 = In t ( 1 2 ]  z/3vg 21/3t (12) 
f \  " n " / ,  V ) 

When converted to directly measurable variables they become 

g(X)RKCl = 0.970 + 3/2 In 2, 

g ' ( 2 ) ~ c l  = 3/(22), g " ( 2 ) . ~  = -3 / (223)  (13) 

and 

g(2)RKC3 ~ ln[7.465RTd/MPe] -- In S -1- �89 In 2 

g'(X)RKC2 = 1/(22), g"(X)RKCZ = --1/(223) (14) 

Reiss (7) has recently evaluated the correction to nucleation theory using the 
same basic philosophy, but dividing up phase space in such a manner that the answer 
was obtained directly in terms of the free energy of a drop. This probably more 
accurate approach leads to the following correction, 

g(2).  = ln(P~V/NkT)  (15) 

where P~ is the pressure of the gas phase in unstable equilibrium with a drop 
containing 2 molecules and is obtained from Kelvin equation 

In S~ = ln(P~/P~) = 2y/(321/a) (16) 

Note the difference between Eqs. (6) and (16). This is because Eq. (6) applies to a 
cluster and Eq. (16) to a drop. Reiss (7) discusses the source of this correction, pointing 
out that it arises only because one calculates the properties of  a cluster by placing 
it in equilibrium with the surrounding gas. In reality it is only the critical cluster, 
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Fig. 3. The predicted critical supersaturation required for the homogeneous nucleation of 
n-nonane from its supersaturated vapor for various theories and rates of nucleation. 

Fig. 4. 

I0 9 

10 8 

107 
Z 
0 

106 

F- 

105 
Ld 
13- 

co 104 

103 F 

I02 -- 
28O 

t I I I l I I I I 

~ CLASSICAL, MERCURY 

, . .  ~ ~/-j:ho,2 

, ~ . .  ~ . ~  

L,p, ~, " - ' "~ .~  .L__---~/_ 
I f , I f I I I I I 

500 520 540 560 580 400 420 440 460 480 
TEMPERATURE (~ 

The predicted critical supersaturation required for the homogeneous nucleation of mercury 
from its supersatured vapor for various theories and rates of nucleation. 



T h e  C r i t i c a l  S u p e r s a t u r a t i o n s  P r e d i c t e d  by N u c l e a t i o n  T h e o r y  143 

560 

480 

ILl 
N 40O 

bJ 

=, 
o 

(b 
E 

I I 1 t I t ~ I I /  

- WATER / "  -~ 

/ 
. /  

520 /~/ 

o,~ \ / - -  . - - / / / /  

160~- / ' \  - - ' % / / /  \ / - 
! . / .  \ . . . / t I -  / / 

0t ~ , ~ ; , , , Ji =I , 

210 250 250 270 290 310 330 550 370 590 410 
TEMPERATURE (~ 

Fig. 5. The predicted size of the critical-size cluster of water at the supersaturations given in Fig. 1. 
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Fig. 8. The  predicted size o f  the critical-size cluster of  mercury  at the supersa tura t ions  given in 
Fig. 4. Since the  Reiss theory is dist inguishable f rom the classical theory on  the  scale o f  this plot,  
it has  been included for a rate o f  nucleat ion J = 1 nucleus  crn -~ sec -z. I n  general  the  Reiss theory  
predicts a critical cluster size approximate ly  1 molecule  larger t han  does the  classical theory. 
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and no t  all clusters, which are in equilibrium. Assuming the gas phase to be ideal, 
i.e., V / N k T  = 1 /P ,  Eq. (15) becomes 

g(2)~ = ln(Px/P) (17) 

Combining Eqs. (16) and (17), g and its derivatives for  the Reiss theory are: 

g(,2)R = 27 / (322 /3)  - -  In S, 

g'(2)R = 2y/(9~4/3), g"(X)R = 8y/(2727/3). (18) 

Equations (8-18) thus provide the formulas needed to evaluate the critical 
supersaturation o f  a substance for  the various theories. One finds that  for  all 
substances the Reiss theory predicts a critical supersaturation which differs f rom 
the classical theory by at most  0.01 ~ .  In  Figs. 1 through 4 are presented the 
predicted supersaturations for  the Reiss or classical theory, for  the L o t h e - P o u n d  
theory, and for  the upper  and lower limits of  the Re i s s -Ka tz -Cohen  theory for  a 
representative set o f  substances (water, methanol,  n-nonane and mercury) over a 
200~ temperature range for  a rate o f  nucleation o f  1 nucleus cm -3 sec -a and a 
condensation coefficient c~ equal to uni ty?  To show the variation o f  supersaturation 
with rate o f  nucleation, the classical or  Reiss vaIues in Figs. 1 4  (indistinguishable 
on the scale o f  these plots) have been plotted for  rates of  nucleation o f  106 and 1012 
nuclei cm -8 sec -1, with ~ = 1. In  Figs. 5-8 are plotted the predictions o f  the various 
theories o f  the size of  critical cluster, 2, over the same temperature range, rates o f  
nucleation, and substances as in Figs. 1-4. 

Al though the Reiss theory predicts a critical supersaturation which differs 
negligibly f rom that  o f  the classical theory, it predicts that  the critical nucleus will 
contain one molecule more  than is predicted by the classical theory. Such a difference 
may be impor tant  for substances like mercury whose predicted critical nucleus size 
for  a rate of  nucleation o f  1 nucleus cm -3 sec -1 is either 9 or  10 molecules at 300~ 
depending on which theory one uses. It  is also impor tant  for  most  o f  the experiments 
done with supersonic nozzles where, since the rates o f  nucleation are typically 1012-1018 
nuclei cm -~ sec -1, the critical sizes are much smaller. For  example, at J = 1013 
nuclei cm -3 sec -1, at 220~ the classical theory predicts a critical size cluster o f  
nonane containing 8 and of  water containing 14 molecules while the Reiss theory 
predicts 9 and 15 molecules respectively. 

* Equation (8) is very simple and can be readily solved on a desk calculator, given the vapor 
pressure, surface free energy, density of the liquid, and molecular weight of the substance at the 
temperature of interest. However, it is very tedious to perform such a calculation for several theories, 
and many different substances, and over a range of temperatures, and this is best done on an electronic 
computer. A Fortran IV program has been written which will perform such a calculation and plot 
the results, for the following substances: methanol, ethanol, n-propanol, n-butanol, n-pentane, 
n-hexane, n-heptane, n-octane, n-nonane, n-decane, water, mercury, and 2-phenylpentane, and can 
be easily modified for any other substance. A copy of this program and of the computer output for 
all of the above substances is available by ordering document NAPS-01058, from ASIS-National 
Auxiliary Publications Service, e/o CCM Information Corporation, 909 Third Avenue, New York, 
New York, 10022, remitting $2.00 for each microfiche or $7.90 for each photocopy. 
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